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Abstract: In this paper, we consider the problem of recovering solutions of matrix factoriza-
tions of the Helmholtz equation in a four-dimensional bounded domain from their values on a
part of the boundary of this domain, i.e., the Cauchy problem. Based on the Carleman function,
an explicit solution of the Cauchy problem for matrix factorizations of the Helmholtz equation
is constructed.
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1 Introduction

The most actively developing modern area of scientific knowledge is the theory of correctly and
incorrectly posed problems, most of which have practical value and require decision making in
uncertain or contradictory conditions. The development and justification of methods for solving
such a complex class of problems as ill-posed ones is an urgent problem of the present time.
The theory of ill-posed problems is an apparatus of scientific research for many scientific ar-
eas, such as differentiation of approximately given functions, solving inverse boundary value
problems, solving problems of linear programming and control systems, solving degenerate or
ill-conditioned systems of linear equations, etc. The concept of a well-posed problem is due to
J. Hadamard (1923), who took the point of view that every mathematical problem corresponding
to some physical or technological problem must be well-posed. In fact, what physical interpre-
tation can a solution have if an arbitrary small change in the data can lead to large changes in
the solution? Moreover, it would be difficult to apply approximation methods to such problems.
This put the expediency of studying ill-posed problems in doubt [34]. For ill-posed problems of
the question arises: What is meant by an approximate solution? Clearly, it should be so defined
that it is stable under small changes of the original information. A second question is: What
algorithms are there for the construction of such solutions? Answers to these basic questions
were given by A.N. Tikhonov (see [2]).

The concept of conditional correctness first appeared in the work of Tikhonov [2], and then
in the studies of Lavrent’ev [37, 38]. In a theoretical study of the conditional correctness (cor-
rectness according to Tikhonov) of an ill-posed problem of the existence of a solution and its
belonging to the correctness set, it is postulated in the very formulation of the problem. The
study of uniqueness issues in a conditionally well-posed formulation does not essentially differ
from the study in a classically well-posed formulation, and the stability of the solution from the
data of the problem is required only from those variations of the data that do not deduce solu-
tions from the well-posedness set. After establishing the uniqueness and stability theorems in
the study of the conditional correctness of ill-posed problems, the question arises of construct-
ing effective solution methods, i.e. construction of regularizing operators. It is known that the
Cauchy problem for elliptic equations and for systems of elliptic equations belongs to the class
of ill-posed problems (see, for example, [1, 2, 29, 34], [36]-[38], [46]-[48]). Boundary value
problems, as well as numerical solutions of some problems, are considered in [3]-[6], [30]-[33],
[35, 39, 44], [49]-[51].
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Based on the results of previous works [37, 38], [40]-[42], [46, 47] we have constructed the
Carleman matrix and based on it the approximate solution of the Cauchy problem for the ma-
trix factorization of the Helmholtz equation. In this article, we find an explicit formula for an
approximate solution of the Cauchy problem for matrix factorizations of the Helmholtz equa-
tion in a multidimensional bounded domain of an odd-dimensional space Rm. The case of an
even-dimensional space will be considered in other scientific studies of the authors. Our ap-
proximate solution formula also includes the construction of a family of fundamental solutions
of the Helmholtz operator in space. This family is parametrized by some entire function K(z),
the choice of which depends on the dimension of the space. In this work, relying on the results
of previous works [7]-[16], we similarly obtain better results with approximate estimates due
to a special selection of the function K(z). This helped to get good results when finding an
approximate solution based on the Carleman matrix. The Carleman matrix or Carleman func-
tion for some elliptic equations and systems was considered in the following studies [7]-[16],
[28, 37, 38], [40]-[43], [46, 47].

When solving correct problems, sometimes it is not possible to find the value of the vector
function on the entire boundary. Finding the value of a vector function on the entire boundary
for systems of elliptic type with constant coefficients (see, for example, [7]-[27]) is one of the
topical problems in the theory of differential equations.

For the last decades, interest in classical ill-posed problems of mathematical physics has
remained. This direction in the study of the properties of solutions of the Cauchy problem for
the Laplace equation was started in [37, 38, 46, 47] and subsequently developed in [7]-[16], [28],
[40]-[43].

2 Basic information and statement of the Cauchy problem

Let Rm, (m = 2k + 1, k ≥ 1) be the m− dimensional real Euclidean space,

ζ = (ζ1, . . . , ζm) ∈ Rm, η = (η1, . . . , ηm) ∈ Rm,

ζ ′ = (ζ1, . . . , ζm−1) ∈ Rm−1, η′ = (η1, . . . , ηm−1) ∈ Rm−1.

Next, we use the following notation:

r = |η − ζ| , α = |η′ − ζ ′| , z = i
√
a2 + α2 + ηm, a ≥ 0,

∂ζ = (∂ζ1 , . . . , ∂ζm)
T
, ∂ζ = χT , χT =

 χ1

. . .

χm

 − transposed vector χ,

W (ζ) = (W1(ζ), . . . ,Wn(ζ))
T , v0 = (1, . . . , 1) ∈ Rn, n = 2m, m ≥ 3,

E(w) =

∥∥∥∥∥∥∥∥∥∥
w1 0 · · · 0
0 w2 · · · 0

· · · · · ·
. . . · · ·

0 0 0 wn

∥∥∥∥∥∥∥∥∥∥
− diagonal matrix, w = (w1, . . . , wn) ∈ Rn.

We also consider a bounded simply-connected domain Ω ⊂ Rm, having a piecewise smooth
boundary ∂Ω = Σ

⋃
D, where Σ is a smooth surface lying in the half-space ηm > 0 and D is the

plane ηm = 0.
P (χT ) is an (n× n)−dimensional matrix satisfying:

P ∗(χT )P (χT ) = E((|χ|2 + λ2)v0),

where P ∗(χT ) is the Hermitian conjugate matrix of P (χT ), λ ∈ R, the elements of the matrix
P (χT ) consist of a set of linear functions with constant coefficients from the complex plane C.

Let us consider the following first order systems of linear partial differential equations with
constant coefficients

P (∂ζ)W (ζ) = 0, (2.1)
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in the domain Ω, where P (∂ζ) is the matrix differential operator of the first-order.
Also consider the set

S (Ω) =
{
W : Ω −→ Rn

}
,

here W is continuous on Ω = Ω ∪ ∂Ω and W satisfies the system (2.1).
The Cauchy problem for system (2.1) is formulated as follows:
Let f : Σ −→ Rn be a continuous given function on Σ.
Problem. Suppose W (η) ∈ S(Ω) and

W (η)|
Σ
= f(η), η ∈ Σ. (2.2)

Our purpose is to determine the function W (η) in the domain Ω when its values are known
on Σ.

If W (η) ∈ S(Ω), then the following integral representation holds

W (ζ) =

∫
∂Ω

L(η, ζ;λ)W (η)dsη, ζ ∈ Ω, (2.3)

where
L(η, ζ;λ) =

(
E
(
Γm(λr)v0)P ∗ (∂ζ)

)
P (tT ).

Here t = (t1, . . . , tm)−is the unit exterior normal, drawn at a point η, the surface ∂Ω,
Γm(λr)− is the fundamental solution of the Helmholtz equation in Rm, (m = 2k + 1, k ≥ 1),
where Γm(λr) defined by the following formula (see [45]):

Γm(λr) = Bmλ(m−2)/2
H

(1)
(m−2)/2(λr)

r(m−2)/2 ,

Bm =
1

2i(2π)(m−2)/2 , m = 2k + 1, k ≥ 1.

(2.4)

Let K(z) be an entire function taking real values for real z, (z = a+ ib; a, b ∈ R) such that

K(a) ̸= 0, sup
b≥1

∣∣bpK(p)(z)
∣∣ = N(a, p) < ∞,

−∞ < a < ∞, p = 0, 1, . . . ,m.

(2.5)

We define the function Ψ(η, ζ;λ) at η ̸= ζ by the following equality

Ψ(η, ζ;λ) =
1

cmK(ζm)

∂k−1

∂sk−1

∞∫
0

Im
[
K(z)

z − ζm

]
cos(λa)√
a2 + α2

da,

m = 2k + 1, k ≥ 1,

(2.6)

where cm = (−1)k2−k(2k − 1)!(m− 2)πωm, k ≥ 1; ωm is the area of a unit sphere in Rm.
In equality (2.6), choosing the function K(z) in the form

K(z) = exp(σz2), K(ζm) = exp(σζ2
m), σ > 0, (2.7)

we get

Ψσ(η, ζ;λ) =
e−σζ2

m

cm

∂k−1

∂sk−1

∞∫
0

Im
[

exp(σz2)

z − ζm

]
cos(λa)√
a2 + α2

da. (2.8)

The integral representation (2.3) will be true if instead Γm(λr) we substitute the function

Ψσ(η, ζ;λ) = Γm(λr) +Gσ(η, ζ;λ), (2.9)



20 D.A. Juraev, A.A. Tagiyeva, J.D. Bulnes and G.X.-G. Yue

where Gσ(η, ζ;λ)− is the regular solution of the Helmholtz equation with respect to the variable
η, including the point η = ζ.

Then the integral representation (2.3) can be written as:

W (ζ) =

∫
∂Ω

Lσ(η, ζ;λ)W (η)dsη, ζ ∈ Ω, (2.10)

where
Lσ(η, ζ;λ) =

(
E
(
Ψσ(η, ζ;λ)v0)P ∗ (∂ζ)

)
P (tT ).

3 Regularized solution of problem (2.1) – (2.2)

Theorem 3.1. Suppose W (η) ∈ S(Ω) satisfies the following boundary condition

|W (η)| ≤ M, η ∈ D. (3.1)

If

Wσ(ζ) =

∫
Σ

Lσ(η, ζ;λ)W (η)dsη, ζ ∈ Ω, (3.2)

then the following estimate is true

|W (ζ)−Wσ(ζ)| ≤ MC(ζ)σk+1e−σζ2
m , σ > 1, ζ ∈ Ω. (3.3)

Here and next the functions bounded on compact subsets of the domain Ω, we denote by
C(ζ).

Proof. Here, using the integral representation (2.10) and the equality (3.2), we get the following
equality

W (ζ) =

∫
Σ

Lσ(η, ζ;λ)W (η)dsη +

∫
D

Lσ(η, ζ;λ)W (η)dsη =

= Wσ(ζ) +

∫
D

Lσ(η, ζ;λ)W (η)dsη, ζ ∈ Ω.

Using boundary condition (3.1), we estimate the following

|W (ζ)−Wσ(ζ)| ≤

∣∣∣∣∣∣
∫
D

Lσ(η, ζ;λ)W (η)dsη

∣∣∣∣∣∣ ≤
≤

∫
D

|Lσ(η, ζ;λ)| |W (η)| dsη ≤ M

∫
D

|Lσ(η, ζ;λ)| dsη, ζ ∈ Ω.

(3.4)

Next, we estimate the integrals
∫
D

|Ψσ(η, ζ;λ)| dsη,
∫
D

∣∣∣∣∂Ψσ(η, ζ;λ)
∂ηj

∣∣∣∣ dsη, j = 1,m− 1

and
∫
D

∣∣∣∣∂Ψσ(η, ζ;λ)
∂ηm

∣∣∣∣ dsη on the part D of the plane ηm = 0.

To do this, first, we separate the imaginary part of the equality (2.8), and as a result we get
the following equality

Ψσ(η, ζ;λ) =
eσ(η

2
m−ζ2

m)

cm

 ∂k−1

∂sk−1

∞∫
0

−e−σ(a2+α2) cosσ
√
a2 + α2

a2 + r2 cos(λa)da+

+
∂k−1

∂sk−1

∞∫
0

e−σ(a2+α2)(ηm − ζm) sinσ
√
a2 + α2

a2 + r2
cos(λa)√
a2 + α2

da

 , ζm > 0.

(3.5)
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Taking into account equality (3.5), we have∫
D

|Ψσ(η, ζ;λ)| dsη ≤ C(ζ)σk+1e−σζ2
m , σ > 1, ζ ∈ Ω, (3.6)

Next, we use the following equality to estimate the second integral

∂Ψσ(η, ζ;λ)
∂ηj

=
∂Ψσ(η, ζ;λ)

∂s

∂s

∂ηj
= 2(yη − ζj)

∂Ψσ(η, ζ;λ)
∂s

,

s = α2, j = 1, 2, . . . ,m− 1.

(3.7)

Given equality (3.5) and equality (3.7), we obtain∫
D

∣∣∣∣∂Ψσ(η, ζ;λ)
∂ηj

∣∣∣∣ dsη ≤ C(ζ)σk+1e−σζ2
m , σ > 1, ζ ∈ Ω. (3.8)

Now, we estimate the integral
∫
D

∣∣∣∣∂Ψσ(η, ζ;λ)
∂ηm

∣∣∣∣ dsη.

Taking into account equality (3.5), we obtain∫
D

∣∣∣∣∂Ψσ(η, ζ;λ)
∂ηm

∣∣∣∣ dsη ≤ C(ζ)σk+1e−σζ2
m , σ > 1, ζ ∈ Ω, (3.9)

From inequalities (3.6), (3.8), (3.9) and (3.4), we obtain an estimate (3.3).

Corollary 3.2. The limiting equality

lim
σ→∞

Wσ(ζ) = W (ζ),

holds uniformly on each compact set from the domain Ω.

4 Estimation of the stability of the solution to the Cauchy problem

Theorem 4.1. Let W (η) ∈ S(Ω) satisfy condition (3.1), and on a smooth surface Σ the inequality

|W (η)| ≤ δ, 0 < δ < M, (4.1)

Then the following estimate is true

|W (ζ)| ≤ C(ζ)σk+1M
1− ζ2

m

η̄2
m δ

ζ2
m

η̄2
m , σ > 1, ζ ∈ Ω. (4.2)

Proof. Using the integral formula (2.10), we have

W (ζ) =

∫
Σ

Lσ(η, ζ;λ)W (η)dsη +

∫
D

Lσ(η, ζ;λ)W (η)dsη, ζ ∈ Ω.

Then we estimate the following

|W (ζ)| ≤

∣∣∣∣∣∣
∫
Σ

Lσ(η, ζ;λ)W (η)dsη

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
D

Lσ(η, ζ;λ)W (η)dsη

∣∣∣∣∣∣ , ζ ∈ Ω. (4.3)

Given inequality (4.1), we estimate the first integral of inequality (4.3).∣∣∣∣∣∣
∫
Σ

Lσ(η, ζ;λ)W (η)dsη

∣∣∣∣∣∣ ≤
∫
Σ

|Lσ(η, ζ;λ)| |W (η)| dsη ≤

≤ δ

∫
Σ

|Lσ(η, ζ;λ)| dsη, ζ ∈ Ω.

(4.4)
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To do this, we estimate the integrals
∫
Σ

|Ψσ(η, ζ;λ)| dsη,
∫
Σ

∣∣∣∣∂Ψσ(η, ζ;λ)
∂ηj

∣∣∣∣ dsη, j =

1,m− 1 and
∫
Σ

∣∣∣∣∂Ψσ(η, ζ;λ)
∂ηm

∣∣∣∣ dsη on a smooth surface Σ.

Taking into account equality (3.5), we have∫
Σ

|Ψσ(η, ζ;λ)| dsη ≤ C(ζ)σk+1eσ(η
2
m−ζ2

m), σ > 1, ζ ∈ Ω. (4.5)

To estimate the second integral, on using the equalities (3.5) and (3.7), we obtain∫
Σ

∣∣∣∣∂Ψσ(η, ζ;λ)
∂ηj

∣∣∣∣ dsη ≤ C(ζ)σk+1eσ(η
2
m−ζ2

m), σ > 1, ζ ∈ Ω, (4.6)

To estimate the integral
∫
Σ

∣∣∣∣∂Ψσ(η, ζ;λ)
∂ηm

∣∣∣∣ dsη, on using the equality (3.5), we obtain

∫
Σ

∣∣∣∣∂Ψσ(η, ζ;λ)
∂ηm

∣∣∣∣ dsη ≤ C(ζ)σk+1eσ(η
2
m−ζ2

m), σ > 1, ζ ∈ Ω. (4.7)

From (4.5) – (4.7) and (4.4), we obtain∣∣∣∣∣∣
∫
Σ

Lσ(η, ζ;λ)W (η)dsη

∣∣∣∣∣∣ ≤ C(ζ)σk+1δ eσ(η
2
m−ζ2

m), σ > 1, ζ ∈ Ω. (4.8)

The following is known∣∣∣∣∣∣
∫
T

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣ ≤ MC(x)σk+1e−σx2
m , σ > 1, x ∈ G. (4.9)

Now taking into account (4.8) – (4.9) and (4.3), we have

|W (ζ)| ≤ C(ζ)σk+1

2
(δ eση̄

2
m +M)e−σζ2

m , σ > 1, ζ ∈ Ω. (4.10)

Choosing σ from the equality

σ =
1
η̄2
m

ln
M

δ
, (4.11)

we obtain an estimate (4.2).

Let W (η) ∈ S(Ω) and instead W (η) on Σ with its approximation fδ(η) are given, respec-
tively, with an error 0 < δ < M ,

max
Σ

|W (η)− fδ(η)| ≤ δ. (4.12)

We put

Wσ(δ)(ζ) =

∫
Σ

Lσ(η, ζ;λ)fδ(η)dsη, ζ ∈ Ω. (4.13)

The following is true

Theorem 4.2. Let W (η) ∈ S(Ω) on the part of the plane ηm = 0 satisfy condition (3.1).
Then the following estimate is true

∣∣W (ζ)−Wσ(δ)(ζ)
∣∣ ≤ C(ζ)σk+1M

1− ζ2
m

η̄2
m δ

ζ2
m

η̄2
m , ζ ∈ Ω. (4.14)
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Proof. From the integral formulas (2.10) and (4.13), we have

W (ζ)−Wσ(δ)(ζ) =

∫
∂Ω

Lσ(η, ζ;λ)W (η)dsη −
∫
Σ

Lσ(η, ζ;λ)fδ(η)dsη =

=

∫
Σ

Lσ(η, ζ;λ)W (η)dsη +

∫
D

Lσ(η, ζ;λ)W (η)dsη −
∫
Σ

Lσ(η, ζ;λ)fδ(η)dsη =

=

∫
Σ

Lσ(η, ζ;λ) {W (η)− fδ(η)} dsη +
∫
D

Lσ(η, ζ;λ)W (η)dsη.

Using conditions (3.1) and (4.12), we estimate the following:

∣∣W (ζ)−Wσ(δ)(ζ)
∣∣ =

∣∣∣∣∣∣
∫
Σ

Lσ(η, ζ;λ) {W (η)− fδ(η)} dsη

∣∣∣∣∣∣+

+

∣∣∣∣∣∣
∫
D

Lσ(η, ζ;λ)W (η)dsη

∣∣∣∣∣∣ ≤
∫
Σ

|Lσ(η, ζ;λ)| |{W (η)− fδ(η)}| dsy+

+

∫
D

|Lσ(η, ζ;λ)| |W (η)| dsη ≤ δ

∫
Σ

|Lσ(η, ζ;λ)| dsη +M

∫
D

|Lσ(η, ζ;λ)| dsη.

Now, repeating the proof of Theorems 3.1 and 4.1, we obtain

∣∣W (ζ)−Wσ(δ)(ζ)
∣∣ ≤ C(λ, ζ)σk+1

2
(δ eση̄

2
m +M)e−σζ2

m .

Next, choosing σ from equality (4.11), we obtain an estimate (4.14).

Corollary 4.3. The limit equality

lim
δ→0

Wσ(δ)(ζ) = W (ζ),

holds uniformly on every compact set from the domain G.

5 Conclusion

In this paper, we have explicitly found a regularized solution to the ill-posed Cauchy problem
for matrix factorizations of the Helmholtz equation in a multidimensional bounded domain. It
is assumed that a solution to the problem exists and is continuously differentiable in a closed
domain with exactly given Cauchy data. For this case, an explicit formula for the continuation
of the solution is established, as well as a regularization formula for the case when, under the
indicated conditions, instead of the Cauchy data, their continuous approximations with a given
error in the uniform metric are given. We have obtained a stability estimate for the solution of
the Cauchy problem in the classical sense.

Thus, functional Wσ(δ)(ζ) determines the regularization of the solution for problems (2.1)
and (2.2).
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