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Abstract: In this paper, we examine the finite-time behavior of the solution to a mixed
problem concerning the equation of third-order nonlinearity in its principal part. By employing
Levine’s lemma for a function that depends intricately on the solution of the initial-boundary
value problem and its derivatives with respect to both x and t, we derive sufficient conditions for
the blow-up of this solution within a finite period of time. Our investigation uncovers the nu-
anced dynamics at play, highlighting the delicate interplay between nonlinearity and time within
the context of the problem. Through rigorous analysis, we aim to illuminate the conditions un-
der which solutions may exhibit singular behavior, contributing to a deeper understanding of the
complexities inherent in nonlinear differential equations. This exploration not only enriches the
theoretical framework surrounding such problems but also sets the stage for potential applica-
tions in various fields that grapple with similar mathematical phenomena.
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1 Introduction

The study of nonlinear boundary conditions has opened new avenues in the analysis of pseu-
doparabolic and pseudohyperbolic equations, revealing complex dynamics that were previously
overlooked in the linear framework. Researchers have begun to investigate the impact of these
nonlinearities on the existence, uniqueness, and regularity of solutions. Notably, the work [5]
demonstrates that nonlinearities can significantly influence the qualitative behavior of solutions,
leading to phenomena such as blow-up or the loss of smoothness under certain conditions. Fur-
thermore, the exploration of mixed boundary conditions has gained traction, prompting a reeval-
uation of classical approaches. In particular, cases where Dirichlet and Neumann conditions
interplay in nonlinear contexts have raised intriguing questions about stability and bifurcation.
The coupling of these boundary conditions forces a deeper understanding of the interaction be-
tween the solutions and the domain’s geometry, leading to a richer theoretical framework. In
light of these developments, ongoing research continues to address the numerical aspects of these
equations. The implementation of advanced computational techniques is essential for capturing
the intricate patterns that arise from nonlinear boundary conditions. Approximative methods
and simulations serve as crucial tools for validating theoretical predictions and for exploring
parameter spaces where traditional analytical techniques falter. Ultimately, as the field evolves,
addressing the challenges posed by nonlinear Dirichlet and Neumann boundary conditions will
remain a central focus. The implications of these studies extend beyond pure mathematics, in-
fluencing applied domains such as fluid dynamics, materials science, and biological systems,
underscoring the interdisciplinary nature of current mathematical research.

To begin our investigation, we define the mixed problem more rigorously, specifying the
boundary conditions that govern the behavior of our system. The presence of third-order non-
linearity introduces complexities that warrant careful handling, particularly in terms of the reg-
ularity and continuity of solutions. We identify an appropriate function space, incorporating
both spatial and temporal dimensions, to rigorously analyze the implications of our boundary
constraints. Using Lemma Levine, we establish a framework for evaluating the growth rates of
solutions in association with their derivatives. This framework enables us to express the con-
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ditions under which the solutions may exhibit blow-up phenomena. By examining the derived
inequalities, we ascertain the relationship between initial conditions and the eventual behavior
of the solutions. Further, we explore the implications of various parameter configurations, show-
casing how changes in nonlinearity influence the solution’s stability. The resultant analysis not
only sheds light on critical thresholds that necessitate consideration but also assists in estab-
lishing a more comprehensive understanding of the dynamics involved. Ultimately, the findings
underscore the delicate interplay between initial conditions and mixed boundary conditions in
exacerbating or mitigating blow-up scenarios.

2 Formulation of the problem

Consider the following problem

utt −
n∑

i=1

Di(|Diu|p−2
Diu)− α∆ut + f(u) = 0, (x, t) ∈ Ω × [0, T ] (2.1)

u(x, 0) = u0(x), ut(x, 0) = u0(x), x ∈ Ω, (2.2)
n∑

i=1

(|Diu|p−2
Diu) cos(xi, υ) + α

∂ut

∂υ
= g(u), (x, t) ∈ ∂Ω × [0, T ], (2.3)

where Ω ⊂ Rn, n ≥ 2 is bounded domain with smooth boundary ∂Ω, u0(x) ∈ W 1
2 (Ω),

u1(x) ∈ L2(Ω) are given functions, f(u) and g(u)- are some nonlinear functions, α > 0-are

some number, p ≥ 2, Di =
∂

∂xi
, i = 1, 2, ..., n, ∆ =

n∑
i=1

∂2

∂x2
i

-is Laplace operator,
∂

∂n
-is deriva-

tive on the external normal at ∂Ω.
Still now, problems with linear and homogeneous Dirichlet and Neumann boundary condi-

tions for various pseudoparabolic and pseudohyperbolic equations have been well studied (see
[1]-[8] and the literature cited therein). In recent years, results have been obtained when the
boundary conditions are nonlinear (for example, in [5], the question of the destruction of solu-
tions for the Aller equation was considered in the case when p = 2).

In this paper, we study the question of blow up of solutions for a nonlinear pseudohyperbolic
equation forp ≥ 2. For the problem (2.1)-(2.3) it is proved the following theorem

3 Solutions of a mixed problem for a third-order equation

Theorem 3.1. Let for any u ∈ R1 and for the functions f(t) and g(τ) satisfies following condi-
tions

2(2α+ 1)F (u)− uf(u) ≥ 0, F (u) =

u∫
0

f(s)ds, (3.1)

ug(u)− 2(2α+ 1)G(u) ≥ 0, G(u) =

u∫
0

g(τ)dτ, (3.2)

α ≥ p− 2
4

. (3.3)

Then if
∫
Ω

F (u0)dx−
∫
∂Ω

G(u0)ds+
1
p

∫
Ω

n∑
i=1

|Diuo|p dx ≤ 0, (u0, u1) > 0 and for every solution

u(x, t) ∈ W 1
2 (0, T ;W 2

2 (Ω))
⋂
W 2

2 (0, T ;L2(Ω)) of the problem (2.1)-(2.3), there exists t0 < ∞
such that

lim
t→t0

∥u(x, t)∥2
+ α

t∫
0

∥∇(x, τ)∥2
dτ

 = ∞.
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Proof. Multiply both sides of the equation by ut and integrate over the domain Ω, we get

1
2
d

dt
∥ut∥2 −

∫
Ω

n∑
i=1

Di(|Diu|p−2
Diu)utdx−

∫
Ω

∆ututdx+

∫
Ω

g(u)utdx = 0.

Applying integration by parts to the second and third terms and taking into account condition
(2.3) and notations (3.1) and (3.2), after simple transformations we obtain

d

dt

1
2
∥ut∥2 +

1
p

∫
Ω

n∑
i=1

|Diu|p dx+

∫
Ω

F (u)dx−
∫
∂Ω

G(u)ds

+

∫
Ω

(∇ut)
2dx = 0, (3.4)

Let’s denote by

E(t) = ∥ut∥2 +
1
p

∫
Ω

n∑
i=1

|Diu|p dx+

∫
Ω

F (u)dx−
∫
∂Ω

G(u)ds.

Then equality (3.4) can be we rewritten as

d

dt
E(t) + ∥∇ut∥2 = 0, (3.5)

Integrating equality (3.5) over from zero to t, we obtain

E(t)− E(0) +
t∫

0

∥∇uτ (τ)∥2
dτ = 0, (3.6)

If we take into account the value of E(t), and after moving E(0)the equality to the right side,
we get

1
2
∥ut∥2 +

1
p

∫
Ω

n∑
i=1

|Diu|p dx+

∫
Ω

F (u)dx−
∫
∂Ω

G(u)ds+

t∫
0

∥∇uτ (τ)∥2
dτ = M(0), (3.7)

where

E(0) =
1
2
∥u0∥2 +

1
p

∫
Ω

n∑
i=1

|Diu0|p dx+

∫
Ω

F (u0)dx−
∫
∂Ω

G(u0)ds.

Consider the function

F (t) = ∥u(x, t)∥2
+

t∫
0

∥∇u(x, σ)∥ dσ+(l−t) ∥∇u0∥2, where l is some sufficiently large number.

Obviously

F (t) = 2(u, ut) + 2
t∫

0

(∇u,∇uτ )dτ,

F
′′
(t) = 2 ∥ut∥2 + 2(u, utt) + 2(∇u,∇uτ ).

Taking into account here that, u is the solution to problem (2.1)-(2.3), we obtain

F
′′
(t) = 2 ∥ut∥2 + 2(u, utt)+

+2(u,
n∑

i=1

Di(|Diu|p−2
Diu)) + 2(u,∆ut)− 2(u, f(u)) + 2(∇u,∇ut).

Applying integration by parts to the second and third terms and using condition (2.3), we
have
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F
′′
(t) = 2 ∥ut∥2 + 2

∫
∂Ω

n∑
i=1

|Diu|p−2
Diu) cos(xi, n)ds−

−2
∫
Ω

n∑
i=1

|Diu|p−2 (Diu)
2dx+ 2

∫
∂Ω

∂ut

∂n
uds− 2(∇u,∇ut)−

−2(u, f(u) + 2(∇u,∇ut) = 2 ∥ut∥2 + 2
∫
∂Ω

(
n∑

i=1

|Diu|p−2
Diu) cos(xi, n) +

∂ut

∂n
)uds−

−2
∫
Ω

n∑
i=1

|Diu|p dx− 2(u, f(u) = 2 ∥ut∥2 +

+2
∫
∂Ω

ug(u)ds− 2
∫
Ω

uf(u)dx+ 2
∫
Ω

n∑
i=1

|Diu|p dx.

Thus

F
′′
(t) = 2 ∥ut∥2 + 2

∫
∂Ω

ug(u)ds− 2
∫
Ω

uf(u)dx+ 2
∫
Ω

n∑
i=1

|Diu|p dx. (3.8)

Multiplying both sides of equality (3.6) by 4(2β + 1), we get

2(2β + 1) ∥ut∥2 +

+
4(2β + 1)

p

∫
Ω

n∑
i=1

|Diu|p dx− 4(2β + 1)
∫
∂Ω

G(u)ds+ 4(2β + 1)
∫
Ω

F (u)dx+

+4(2β + 1)
t∫

0

∥∇uτ (τ)∥ dτ = 4(2β + 1)E(0)2
t∫

0

(∇u,∇uτ )dτ.

Let’s rewrite this equality in the form

0 = 2(2β + 1) ∥ut∥2 +

+
4(2β + 1)

p

∫
Ω

n∑
i=1

|Diu|p dx− 4(2β + 1)
∫
∂Ω

G(u)ds+ 4(2β + 1)
∫
Ω

F (u)dx+

+4(2β + 1)
t∫

0

∥∇uτ (τ)∥ dτ = 4(2β + 1)E(0).
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Let’s add this equality to (3.8), after which we get

F
′′
(t) = 4(2β + 1) ∥ut∥2 + 4(2β + 1)

t∫
0

∥∇uτ (τ)∥ dτ+

+2
∫
∂Ω

(ug(u)− 2(2β + 1)G(u))ds+ 2
∫
Ω

(2(2β + 1)F (u)− uf(u))dx+

+

(
4(2β + 1)

p
− 2

)∫
Ω

n∑
i=1

|Diu|p dx− 4(2β + 1)E(0).

Taking into account conditions (3.1)-(3.3) of the theorem here, we will have

F
′′
(t)(t) ≥ 4(β + 1)

∥ut∥2 +

t∫
0

∥∇uτ (τ)∥ dτ

 .

Given the values F (t)and F
′
(t) the estimates F

′′
(t) in the difference

F (t)F
′′
(t))− (1 + β)(F

′
(t))2

after some transformations we get

F (t)F
′′
(t))− (1 + β)(F

′
(t))2 ≥ 0.

Then, by Lemma [2], we can approve that there exists t0 =
F (0)
βF ′(0)

such that,

there is

lim
t→t0

∥u(x, t)∥2
+ α

t∫
0

∥∇uτ (x, τ)∥2
dτ

 = ∞.

Theorem was proved.

4 Conclusion

The study of nonlinear problems associated with third-order equations is a compelling area of
mathematical analysis, particularly due to the complexity and diverse applications these equa-
tions present. Third-order differential equations often arise in the modeling of physical phenom-
ena, such as fluid dynamics, beam deflection, and wave propagation. The nonlinear nature of
these equations poses significant challenges in obtaining analytical solutions, necessitating the
development of robust numerical techniques and innovative analytical methods. One of the piv-
otal aspects of dealing with nonlinear third-order equations is the exploration of boundary value
problems. The uniqueness and existence of solutions in such contexts hinge on the boundary
conditions imposed. Various methods, including perturbation techniques and fixed-point theo-
rems, can be leveraged to derive approximate solutions or to analyze the stability of solutions.
Additionally, the integration of qualitative theory provides insight into the behavior of solutions
and the influence of nonlinearity on their properties. Moreover, technological advancements
have enabled the use of computational tools to tackle these complex equations, allowing for
simulations that were previously infeasible. This intersection of mathematics and computational
science opens new avenues for research and application, especially in engineering and physics.
As we continue to delve into these nonlinear problems, the potential for discovering novel solu-
tions and theoretical insights remains vast and promising.
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