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Abstract: Among in the class of Numerical Methods for solving initial-value problem one of
the popular methods is the Adams-Moulton and Adams-Bashforth, which make up the Adams-
family. Many experts believe that Multistep methods are obtained from the generalization of
Adams methods. Historically it happened that first the methods of Adams appeared. And after
the emergence of Adams methods specialists constructed methods that is a special case of the
Adams methods. Noted that Adams method intersects with the Runge-Kutta methods at one
point, which is called Euler’s method. Adams methods and Runge-Kutta methods are the in-
tersects at the multiple points in the application them to calculation of definite integrals. As is
known the fourth order Runge-Kutta method, which was constructed by Runge, coincides with
Simpson’s method in the application them to calculation of the definite integral. Here, have com-
pared Adam’s methods with Multistep Methods in the application of them to solve initial-value
problem for the Ordinary Differential Equations the first order. By using specific examples it is
shown, how one can obtain Adams methods from the Runge-Kutta methods and vice versa.
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1 Introduction

As is known the investigation of the ODEs beginning from the Newton. Construction the Numer-
ical Methods for solving initial-value problem of the ODEs has been investigated by many known
authors as Euler, Kowell, A.N.Krilov, Adams, Bakhvalov, Dahlquist, Runge-Kutta, Butcher,
Iserls, Norset, Ibrahimov and etc. have constructed some classes Numerical methods to solve
initial-value problem for the ODEs. As is known the first Numerical methods are constructed by
using power series, which are called as the Numerical-Analytical method. Euler point out the
shortcomings of these methods offered his famous direct Numerical method. This direction was
developed by many famous scientists, who have constructed different Numerical Methods for
solving above named problem.

Let us to consider the following initial-value problem for the ODEs of the first order, having
the following form (see for example [1]-[21]):

y′(x) = f(x, y), y(x0) = y0, x0 ≤ x ≤ X. (1.1)

For the investigation, the numerical solutions of this problem, let us suppose that the solution
y(x) of the problem (1.1) is a continuous function that is defined in a segment, where that has
derivatives of some order p+1, inclusively. But the continuous to totality of arguments function
f(x,y) is determine that in some closed set in which has partial derivatives to some of order p,
inclusively.
Let us divide the segment [x0, X] to N equal parts by using a constant step-size h and denote the
mesh-points by the xi+1 = xi + h, here h > 0. The exacts values of the solutions of problem
(1.1) at the mesh-points xi, let us denote by the y(xi) and the corresponding approximately value
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by the yi (i = 0, 1, ..., N). The exact values of the function f(x,y(x)) at the pointdenote by the
and the approximately values by the f(xi, yi) or fi(i = 0, 1, ..., N).
The classical method Runge-Kutta can be presented as follows:

ỹn+1 = ỹn + h(β̃1k̃1 + β̃2k̃2 + ...+ β̃mk̃m), (1.2)

here k̃i(i = 1, 2, ..,m) are defined in the following form:

k̃1 = f(xn, yn),

k̃2 = f(xn + α̃2h, yn + hγ2,1k̃1),

k̃3 = f(xn + α̃3h, yn + hγ3,2k̃2),

..................................................................................,

k̃m = f(xn + α̃mh, yn + h(γ̃m,1k̃1 + γ̃m,2k̃2 + ...+ γm,mk̃m)).

This method is explicit therefore, it can be easily applied to solve some practical problems.
By using method (1.2), one can construct a semi-implicit one-step method of Runge-Kutta types,
which in one version can be present as follows:

yn+1 = yn + h(β̄1k̄1 + β̄1k̄2 + ...+ β̄mk̄m). (1.3)

The quantities involved here are defined as the following form:

k̄1 = f(xn + α1h, yn + hγ̄1,1k̄1),

k̄2 = f(xn + α2h, yn + hγ̄2,1k̄1 + hγ̄2,2k̄2),

k̄3 = f(xn + α3h, yn + hγ̄3,1k̄1 + hγ̄3,2k̄2 + hγ3,3k̄3),

..................................................................................,

k̄m = f(xn + αmh, yn + hγ̄m,1k̄1 + hγ̄m,2k̄2 + ...+ hγ̄m,mk̄m).

If methods (1.2) and (1.3) are compared with known methods, then receive that these methods
resemble ordinary explicit and implicit methods.

As is known application of the method (1.3) arises some difficult, which are related with
the calculation the values k̄1, k̄2, ..., k̄m. It is obvious that the values k̄j(j = 1, 2, ...,m) can
be calculated by the above given sequence. For the sake of objectivity, let us noted that in
calculations of the k̄j(j = 1, 2, ...,m) are arises necessity to solve some nonlinear algebraic
equations. Now let us consider the construction of the implicit Runge-Kutta methods, which can
be written as the following:

yn+1 = yn + h(β1k1 + β2k2 + ...+ βmkm), (1.4)

here the unknowns are defined in the following form:

ki = f(xn + αih, yn + h(γi,1k1 + γi,2k2 + ...+ γi,mkm)), i = 1, 2, ...,m.

The aim of our investigation is compares the methods of type Runge-Kutta and Adams. In
usually the Adams method, which is applied to solve problem (1.1), is presented in the following
form (see for example [22]-[45]):

yn+k = yn+k−1 + h

k∑
i=0

βifn+i, n = 0, 1, ..., N − k. (1.5)

For the value βk = 0 from this method, one can receive explicit Adams, or Adams-Moulton
method. Obviously, the method (1.5) is implicit or is the type of Adams-Bashforth for the case
βk ̸= 0. By the simple comparison, receive that Adams-Moluton method corresponds to method
(1.2), but Adams-Bashforht method corresponds to method (1.3). Simple comparison of Adams
methods with the Runge-Kutta methods, receive that in the class of Adams methods there is not
method having the property of implicit Runge-Kutta method. Here will show that such methods
exist in the class of Multistep methods with constant coefficients. To confirm what has been said,
let us consider the following paragraph.
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2 On some properties of the forward-jumping methods

For the demonstrated the above noted, let us consider to the following Multistep Method with
constant coefficients:

k∑
i=0

αiyn+i = h

k∑
i=0

βifn+i, n = 0, 1, .., N − k. (2.1)

From this method one can be receive the Adams and many others similar methods. For example
if βk = 0, then from the one can be receive Adams-Moulton methods. However, in the case
βk ̸= 0 from the method (2.1) follows Adams-Bashforth methods. Method (2.1) has investigated
by many authors (see for example [15],[18, 30, 43], [46]-[61]).

Dahlquist fully investigated method (2.1) and define the conditions imposed on the coeffi-
cients, which can be presented as follows:

A. The coefficients αi, βi (i = 0, 1, .., k) are the real numbers and αk ̸= 0.
B. The characteristic polynomials

ρ(λ) ≡
k∑

i=0

αiλ
i; δ(λ) ≡

k∑
i=0

βiλ
i

have not common factor different from constant.
C. The following take place: ρ′(1) ̸= 0, p > 0.
Here, by the p-has denoted the order of accuracy for the method (2.1).
Here suppose that he condition A-C are holds.
The multistep methods are compare by using the conception stability and degree, which can

been define as follows.

Definition 2.1. Method (2.1) is called as the stable if the roots of the polynomial located in the
unit circle, on the boundary of which there is not multiple roots.

Definition 2.2. Integer value p is called as the degree for the method (2.1), if the following
asymptotic equality takes place:

k∑
i=0

(αiy(x+ ih)− hβiy
′(x+ ih)) = O(h)p+1, h → 0. (2.2)

It is obvious that to determine the accuracy of the method (2.1), it is sufficient to determine the
value of the p in the asymptotic equality (2.2).

For the estimation of the degree p for the method (2.1), Dahlquist prove the following theo-
rem.

Theorem 2.3. (Dahlquist). Suppous that method (2.1) has the degree of p and stable. Then it
does:

p ≤ 2[k/2] + 2.

And for the each k, there exist stable method with the degree pmax = 2[k/2] + 2.

For the construction more exact stable methods, Ibrahimov suggested to use forward-jumping
(advanced) method, which can be presented as follows:

k−m∑
i=0

αiyn+i = h

k∑
i=0

βifn+i; n = 0, 1, 2, ..., k; m > 0. (2.3)

It is obvious that in the case αk−m ̸= 0 and
k∑

j=k−m+1
|β| ̸= 0 the classes of methods (2.1) and

(2.3) do not intersect.
Therefore, each of them is an independent object of research. Ibrahimov has investigated

method (2.3) and prove the following theorem:



70 Gulshan Kh. Shafiyeva, Vagif R. Ibrahimov and Davron A. Juraev

Theorem 2.4. (Ibrahimov). If method (2.3) is stable and has the degree of p, then in the class of
(2.3), there are methods with the degree

p ≤ k +m+ 1, (k ≥ 3).

He, constructed stable method of type (2.3) with the degree p = 5 for the case k = 3. By the
results of Dahlquist, receive that in the class of methods (2.1) there is not stable method with the
degree p > k + 1.
Thus, receive that, these methods are perspective. Now let us to consider comparison method
(1.4) with the method of (2.3). For this aim let us to consider case m = 1 and k = 3. In this
case, from the method (2.3) one can be receive the following method of advanced type:

yn+2 = (11yn + 8yn+1)/19 + h(10fn + 57fn+1 + 24fn+2 − fn+3)/57, (2.4)

local truncation error for which can be presented as:

Rn = −11h6y(6)n /3420 +O(h)7.

Let us to construct method of type (2.1) for the case k = 3 with the maximum degree, then one
can receive:

yn+3 = yn+2 + h(9fn+3 + 19fn+2 − 5fn+1 + fn)/24. (2.5)

By simple comparison methods (2.4) and (2.5), receive that advanced (forward-jumping) meth-
ods are better
If in the method, (1.4) take m = 2, then receive implicit Runge-Kutta method, which resembles
the method (2.4). Note that the Runge-Kutta method can applied to solve some problems in the
segment [xn, xn+1] (see foe example [62]-[76]). However, multistep methods of type (2.1) can
be applied to solve any problems in the segment [xn, xn+1]. Methods receive from the method
(2.1) for the k = 1 can compares with Runge-Kutta method and Multistep methods are not the
same. However, there are some similarities between them. For the illustration of this, let us to
consider the Runge-Kutta method of forth order, which can presented as follows:

yn+1 = yn + h(K1 + 2K2 + 2K3 +K4)/6, (2.6)

here, the quantities kj(j = 1, 2, 3, 4) are determined by the following form:

K1 = f(xn, yn); K2 = f(xn + h/2, yn + hK1/2);
K3 = f(xn + h/2, yn + hK2/2); K4 = f(xn + h, ynK3).

If the function of f(x, y) independent from the arguments y(f(x, y) = φ(x)is holds), then
method (2.6) can be written as the following:

yn+1 = yn + h(φn + 4φn+1/2 + φn+1)/6. (2.7)

Let us replace h by the 2h, then from method (2.7) receive:

yn+2 = yn + h(φn + 4φn+1 + φn+2)/3. (2.8)

This method is the known Simpson method.
And now let us to consider application of Adams methods to calculation following function:

y(x) = y(x0) +

x∫
x0

φ(s)ds, x0 ≤ x ≤ X. (2.9)

Let us in the (2.9) to put x = xk. Then receive

y(xk) = y(x0) + h

k∑
i=0

βiφn+i +Rn. (2.10)
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Here Rn-is the reminder term. Discarding the remainder term, receive the following:

yn+k = yn + h

k∑
i=0

βiφn+i. (2.11)

This method is also called as the Adams method. It is obvious that method (2.11) more general,
than the method (1.5). In the class of methods (2.11), there are stable method with degree
p = k + 2. For the fairness of this it is enough to recall the Simpsons’s method which written as
method (2.7).
Let us method (2.11) to write in the following form:

yn+k = yn + h

k∑
i=0

βifn+i, n = 0, 1, .., N − k. (2.12)

Considering that the roots of the polynomial ρ(λ) = λk − 1 located on the boundary of the unite
circle and among of them there are no multiple roots. There for method of (2.12) is stable. It is
known that, the roots of the polynomial

λk − (λk−1 + λk−2 + ...+ λ+ 1)/k,

satisfies the conditions of stability, therefore some authors the linear part of Multistep methods
selected in the form:

yn+k − (yn+k−1 + ...+ yn+1 + yn)/k.

3 Numerical results

For the illustration results received here, let us consider the following example:

y′ = λy, y(0) = 1, 0 ≤ x ≤ 1, (3.1)

the exact solution for which can be presented as: y(x) = exp(x).
As was noted above for the application of advanced methods are arises some difficult for the

calculation of the value yn+k−m+1, yn+k−m+2 etc. It is obvious that in application of the method
(2.4) to solve example (3.1) arise necessity calculation the value yn+k−m+1. For this one can be
used the following method:

ŷn+3 = yn+2 + h(23fn+2 − 16fn+1 + 5fn)/24,

ȳn+3 = yn+2 + h(9f̂n+3 + 19fn+2 − 5fn+1 + fn)/24,

yn+2 = (8yn+1 + 11yn)/19 + h(10fn + 57fn+1 + 24fn+2 − f̄n+3)/57,

here f̂m = f(xm, ŷm) and f̄m = f(xm, ȳm).
This algorithm has applied to solve problem (1.1) for the values λ = ±1; λ = ±5. The

receiving results are tabulated in the table 1.

Table 1. Results for the step-size h = 0.1:
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λ xn Error for method (2.3)
h = 0.1
λ = 1 0.1

0.4
0.7
1.0

1.28E-10
7.27E-10
1.72E-9
3.4E-9

λ = −1 0.1
0.4
0.7
1.0

1.04E-10
3.24E-10
4.23E-10
4.49E-10

λ = 5 0.1
0.4
0.7
1.0

4.23E-8
3.96E-8
1.55E-8
4.98E-9

λ = −5 0.1
0.4
0.7
1.0

1.19E-7
2.24E-6
1.77E-5
1.13E-4

The obtained result corresponds to the theoretical.

4 Conclusion

Let us note that the purpose of the research numerical solution of the initial-value problem for
Ordinary Differential Equation by the compares the known numerical methods that were applied
to solve above named problem for ODEs started from the end of XVIII century. Methods of
type Runge-Kutta development in the XIX century, however, research of Multistep methods also
began from XIX century, but with a large map of 40 years. Here also is shown the development
of the Numerical methods that were used in solving initial-value problem for ODEs. Also here
has defined the relation between the Runge-Kutta methods with the class Multistep Methods.
Find some points, where these methods are intersecting. One of them is the Simpson’s method.
Have given some recommendation for the construction with the best properties. Have defined
some connection between of the Runge-Kutta and Multistep Methods. For the comparison of
the Runge-Kutta methods with the Multistep Methods in fully from here have used advanced
(forward-jumping) methods, which is fully investigated by Ibrahimov. We hope that the results
obtained, here will help many specialists who are engaged in the field of numerical methods. The
evolution towards advanced methods, such as those outlined by Ibrahimov, unveils new avenues
for exploration, revealing deeper connections between the classes of techniques. Their perfor-
mance in specific scenarios, particularly regarding stability and convergence, provides crucial in-
sights for practitioners. As the field progresses, it is critical to embrace these interrelationships,
optimizing existing methods, and seeking innovations that continue to advance the numerical
resolution of ODEs, ultimately benefiting diverse applications across scientific and engineering
disciplines. Through comparative examples, one can observe that specific initial conditions yield
congruent results from both the Adams and Runge-Kutta approaches, affirming their structural
and functional relationship in numerical computations. The versatility of these methods under-
scores their significance in scientific and engineering fields, where the demand for accurate and
efficient solutions to ODEs remains paramount.
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