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Abstract: In this paper, we show that a specific extension of the Schrödinger ansatz for
two free particles, under the requirement that this function (ansatz) be analytical, is compatible
with the expected physical result for a quantum description at the quantum-classical bound-
ary; that is, its total erasure in the transition to a description compatible with classical physics.
Using the Cauchy-Riemann relation, the Laplace equation, and the Hamilton-Jacobi equation,
we have shown that this function verifies a classical equation arising from the time-dependent
Schrödinger equation, since in the assumed context the time variable can be taken as a parameter
since it is irrelevant in the process of approximation to the quantum-classical boundary.
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1 Introduction

The problem Newton solved by discovering the force of gravitational attraction, which explains
the kinematic laws of planetary motion, discovered by Kepler, is called the inverse problem [1]-
[2]. On the other hand, the problem solved (or rather, the approach he followed) by Schrödinger,
starting from an ansatz to deduce a differential equation for it, also corresponds to an inverse
problem (approach) [3]-[4]. Inverse problems, which are very relevant in various fields [5]-[12],
have the general characteristic of not having a unique solution. In Schrödinger’s problem, it is
clear that arising from this general approach, one can, in principle, find mathematical solutions
distinct from Schrödinger’s equation. Therefore, it is interesting to ask whether any new equation
arising from this approach also carries physical content? Would these equations be related to
Schrödinger’s? This article develops an example of this situation.

1.1 Brief review

We know that the approach that uses: (i) the so-called Schrödinger ansatz, which, in the case
with a spatial variable, is written as:

ψ(x, t) = exp
{
(i/ℏ)S(x, t)

}
, (1.1)

where S(x, t) is the action function for a physical system, (ii) the Hamilton-Jacobi equation,
(iii) as well as a certain conceptual context, enabled Prof. Schrödinger to obtain his famous
equation. In several articles on the same problem, using the classical Hamilton-Jacobi equation,
the approximation that consists of taking the limit ℏ → 0 to eliminate an excess term [13]-
[17] is used in the approximate passage to the Schrödinger equation. Only recently, it was
shown, for the case of quantum systems in one spatial dimension and when the acting potential
does not explicitly depend on the time variable, that one can exactly deduce both the complete
Schrödinger equation from the classical Hamilton-Jacobi equation, as well as it’s inverse [18]. In
this article, considering the action S(x1, x2, t) for a physical system formed by two free particles
of equal mass, with coordinate variables x1 and x2, separately, which are moving in opposite
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directions, we will determine under which condition, in the form of a differential equation for
C(x1 − x2), the following function:

Ψ(x1, x2, t) = C(x1 − x2) exp
{
(i/ℏ)S(x1, x2, t)

}
, (1.2)

will correspond to an analytical function. The expression in (1.2), which besides being an obvi-
ous extension of (1.1), is only formal since C(x1 − x2) is not defined. By finding C(x1 − x2),
we will determine the corresponding mathematical consequences for Ψ(x1, x2, t); in particular,
for “infinite" separation between the particles: (x1 − x2 → ∞). In this context, since we will not
use the usual ansatz (1.1), it is obvious that there is no guarantee that function (1.2) verifies the
Schrödinger equation.

Finally, in recent literature, we find several tools, approaches, and formal problems in math-
ematical physics [19]-[26] and the identification and resolution of new quantum problems [27]-
[40] that can be used in new extensions and new contexts for quantum mechanics.

2 Mathematical developments

Just for simplicity of notation, we will use here Φ(x1, x2, t) instead of writing (1/ℏ) S(x1, x2, t).
Since the sought function C(x1 − x2) must lead to an analytic function Ψ(x1, x2, t), the real and
imaginary parts of the latter must be required to satisfy the Cauchy-Riemann conditions1 [42];
from which certain relations between C(x1 − x2) and Φ(x1, x2, t) will follow.

On the other hand, as is well known, the real and imaginary parts of an analytic function
are harmonic functions, that is, they verify Laplace’s equation [43], as long as these parts have
continuous derivatives up to and including second-order. The above, together with the Hamilton-
Jacobi equation [17], will produce a complementary equation, which together with the first rela-
tions found via Cauchy-Riemann’s conditions, will lead to the equation for C(x− y). Let us see
this.

Using simplified notation, function (1.2) is written as:

Ψ(x1, x2, t) = C(x1 − x2)e
iΦ(x1,x2,t) , (2.1)

2.1 Relations arising from the Cauchy-Riemann’s condition

The real and imaginary parts of (2.1), which are directly identifiable:

Ψ(x1, x2, t) = C(x1 − x2) cosΦ(x1, x2, t) + i C(x1 − x2) sinΦ(x1, x2, t),

⇒ u(x1, x2, t) = C(x1−x2) cosΦ(x1, x2, t), v(x1, x2, t) = C(x1−x2) sinΦ(x1, x2, t) (2.2)

will not be independent, but will be connected by the Cauchy-Riemann conditions:

∂u

∂x1
=

∂v

∂x2
&

∂u

∂x2
= − ∂v

∂x1
. (2.3)

Here it is sufficient to consider only the first of them. Substituting (2.2) in (2.3) we have:

∂

∂x1

{
C(x1 − x2)cosΦ

}
=

∂

∂x2

{
C(x1 − x2)sinΦ

}
. (2.4)

We change the variable η ≡ x1 − x2, and then we derive the expressions in (2.4), obtaining:

C(η)

(
− sinΦ

)
∂Φ

∂x1
+
dC

dη

dη

dx1
cosΦ = C(η)

(
cosΦ

)
∂Φ

∂x2
+
dC

dη

dη

dx2
sinΦ. (2.5)

Or also,

−C(η) ∂Φ

∂x1
sinΦ +

dC

dη
(η) cosΦ = C(η)

∂Φ

∂x2
cosΦ − dC

dη
(η) sinΦ. (2.6)

1Also known as Euler-d’Alembert relations [41].
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Grouping terms appropriately we have:(
− C(η)

∂Φ

∂x1
(x1, x2) +

dC

dη
(η)

)
sinΦ +

(
dC

dη
(η)− C(η)

∂Φ

∂x2
(x1, x2)

)
cosΦ = 0. (2.7)

And being the functions sinΦ and cosΦ linearly independent for all x1, x2 ∈ ℜ, we obtain, from
(2.7), the independent equations:

dC

dη
= C(η)

∂Φ

∂x1
&

dC

dη
= C(η)

∂Φ

∂x2
. (2.8)

After equating the equations in (2.8), we obtain:

∂Φ

∂x1
− ∂Φ

∂x2
= 0, (2.9)

Where it was previously considered that C(x1 − x2) is non-zero, as it should be. Then, from the
equation on the left-hand side in (2.8) it follows, by differentiation with respect to the variable
x1 (assigned to the first particle), that:

d2C

dη2
dη

dx1
=

(
dC

dη

dη

dx1

)
∂Φ

∂x1
+ C(η)

∂2Φ

∂x2
1
. (2.10)

Or also,
d2C

dη2 =
dC

dη

∂Φ

∂x1
+ C(η)

∂2Φ

∂x2
1
. (2.11)

And from the equation on the right-hand side in (2.8) it follows, by differentiation with respect
to the variable x2:

d2C

dη2
dη

dx2
=

(
dC

dη

dη

dx2

)
∂Φ

∂x2
+ C(η)

∂2Φ

∂x2
2
. (2.12)

Or also,

−d
2C

dη2 = −dC
dη

∂Φ

∂x2
+ C(η)

∂2Φ

∂x2
2
. (2.13)

Adding equations (2.11) and (2.13) we obtain:

dC

dη

{
∂Φ

∂x1
− ∂Φ

∂x2

}
+ C(η)

{
∂2Φ

∂x2
1
+
∂2Φ

∂x2
2

}
= 0. (2.14)

Considering the result in (2.9) we have that (2.14) simplifies to:

∂2Φ

∂x2
1
+
∂2Φ

∂x2
2
= 0, (2.15)

Where it has been previously considered that C(x − y) is non-zero. Thus, Φ(x, y) satisfies
Laplace’s equation and the equation in (2.9). It can also be said, in the context being considered
and according to the notation used, that the action S satisfies Laplace’s equation.

2.2 Relations arising from the Laplace and Hamilton-Jacobi’s equations

Consider Laplace’s equation for the imaginary part of Ψ(x1, x2, t), that is:

∂2v

∂x2
1
+
∂2v

∂x2
2
= 0. (2.16)

Then, substituting the expression for v(x1, x2, t), which is deduced from (2.2), in (2.16), we
have:

∂2

∂x2
1

(
C(η) sinΦ

)
+

∂2

∂x2
2

(
C(η) sinΦ

)
= 0 (2.17)
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Performing the first derivative on each term in (2.17) we have expressly:

∂

∂x1

{
C(η) cos Φ

∂Φ

∂x1
+
dC

dη
sin Φ

}
+

∂

∂x2

{
C(η) cos Φ

∂Φ

∂x2
− dC

dη
sin Φ

}
= 0 (2.18)

In (2.18), after performing the second derivative on each term, we get:

C(η)

{
− sin Φ

( ∂Φ

∂x1

)2
+ cos Φ

(∂2Φ

∂x2
1

)}
+ 2

dC

dη

∂Φ

∂x1
cos Φ + 2

d2C

dη2 sin Φ +

+ C(η)

{
cos Φ

(∂2Φ

∂x2
2

)
− sin Φ

( ∂Φ

∂x2

)2
}
− 2

dC

dη

∂Φ

∂x2
cos Φ = 0. (2.19)

Arranging terms in (2.19) we have:

− C(η) sin Φ

[( ∂Φ

∂x1

)2
+

( ∂Φ

∂x2

)2
]
+ C(η) cos Φ

[(∂2Φ

∂x2
1

)
+

(∂2Φ

∂x2
2

)]
+

+ 2
d2C

dη2 sin Φ + 2
dC

dη
cos Φ

(
∂Φ

∂x1
− ∂Φ

∂x2

)
= 0. (2.20)

Using the results (2.15) and (2.9), equation (2.20) reduces to:{
d2C

dη2 − 1
2

[( ∂Φ

∂x1

)2
+

( ∂Φ

∂x2

)2
]
C(η)

}
sin Φ = 0. (2.21)

That is, we have:
d2C

dη2 − 1
2

[( ∂Φ

∂x1

)2
+

( ∂Φ

∂x2

)2
]
C(η) = 0. (2.22)

Now it is convenient to return to the original symbology, Φ(x1, x2, t) ≡ (i/ℏ)S(x1, x2, t), to
place the action in (2.22); then, we write:

d2C

dη2 − 1
2ℏ2

[( ∂S
∂x1

)2
+

( ∂S
∂x2

)2
]
C(η) = 0. (2.23)

On the other hand, from the Hamilton-Jacobi equation [14], assuming that the two particles are
free and have (the same parameter of) mass m, one can write:

1
2

[( ∂S
∂x1

)2
+

( ∂S
∂x2

)2
]
= − m

∂S

∂t
(x1, x2, t). (2.24)

When the physical system does not have a potential that explicitly depends on time, as in the case
with two free particles, one can write the (non-standard) action [17] in an additive and separable
manner in its variables:

S(x1, x2, t) = −at+ g(x1, x2), a ̸= 0. (2.25)

Where the corresponding equation for the unknown function g(x1, x2) is obtained directly from
the Hamilton-Jacobi equation, see (2.31). Thus, we have that (2.24) can be rewritten as:

1
2

[( ∂S
∂x1

)2
+

( ∂S
∂x2

)2
]
= ma. (2.26)

2.3 (Quantum) Equation for C(x1 − x2)

Substituting (2.26) into (2.23) we finally find the equation for C(η):

d2C

dη2 − ma

ℏ2 C(η) = 0. (2.27)
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Note that the above equation, which is quantum (due to the presence of ℏ), linear and dimen-
sionally correct, has as a general solution:

C(x1 − x2) = A exp
{√

ma

ℏ (x1 − x2)
}
+B exp

{
−

√
ma

ℏ (x1 − x2)
}
, (2.28)

but, the physical solution corresponds to taking A = 0, since an infinite growth in the value of a
quantum function (in this case, when x1 − x2 → ∞) is not physically acceptable [44]; thus, we
have that (2.28) can be reduced to:

C(x1 − x2) = B exp

{
−

√
ma

ℏ (x1 − x2)

}
. (2.29)

Consequently, the function Ψ(x1, x2, t), in (1.2), is formally written as:

Ψ(x1, x2, t) = B exp

{
−

√
ma

ℏ (x1 − x2)

}
exp

{
(i/ℏ)

(
− at+ g(x1, x2)

)}
. (2.30)

But, in (2.30), the function g(x1, x2) remains undefined. This function must verify the following
equation in partial derivatives, non-linear and non-homogeneous:(

∂g

∂x1

)2

+

(
∂g

∂x2

)2

= 2ma , (2.31)

Whose solution is found directly:

g(x1, x2) = ϵ
√
ma (x1 + x2) , ϵ = ±1. (2.32)

Then, the total function, describing the state for two particles, is written as:

Ψ(x1, x2, t) = B exp
{
−

√
ma

ℏ (x1 − x2)
}
exp

{
(i/ℏ)

(
ϵ
√
ma (x1 + x2)− at

)}
. (2.33)

The amplitude of Ψ(x1, x2, t), that is, the non-oscillating factor, progressively attenuates as the
physical system moves. As a result, function (2.33) vanishes for infinite separation between the
particles:

When: (x1 − x2) → ∞ then: Ψ(x1, x2, t) → 0. (2.34)

That is, a manifestation of the quantum description, the constant ℏ, previously present in this
function, disappears. In this way, the analytical function in (2.33), under the mathematical con-
dition expressed by the limit (x1 − x2) → ∞, which should correspond to the classical limit of
quantum mechanics, vanishes at the quantum-classical boundary2. Which equation is satisfied
by function (2.33)? This will be considered in section 2.5. Let us first look at an aspect of the
mathematical compatibility of function (2.33), which should correspond, by hypothesis, to the
total state of two free particles.

2.4 More on the partial plane waves for each particle

For free particles that move independently of each other, their total function should correspond
to the product of the functions of each particle. We will see below that function (2.33) can be
decomposed as a product of functions:

Ψ(x1, x2, t) = ψ1(x1, t) ψ2(x2, t). (2.35)

(Here we are mainly interested in compatibility and not in univocal3 identification) being the
expressions of the partial functions:

ψ1(x1, t) = B1/2 exp
{
−

√
ma

ℏ x1

}
exp

{
(i/ℏ)

(
ϵ
√
ma x1 −

a

2
t
)}
, (2.36)

2Of which, according to the formalism of quantum mechanics, would not be a collapse of the function.
3Assuming that Ψ(x1, x2, t) in (2.33) verifies a linear equation, we also have the possibility of writing: Ψ(x1, x2, t) =

ψ1(x1, t) ψ2(x2, t)|ϵ=+1 + ψ1(x1, t) ψ2(x2, t)|ϵ=−1 = 2ψ1(x1, t) ψ2(x2, t).
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ψ2(x2, t) = B1/2 exp
{ √

ma

ℏ x2

}
exp

{
(i/ℏ)

(
ϵ
√
ma x2 −

a

2
t
)}
, (2.37)

Where we correctly note, in the phase angle in (2.36) and (2.37), the coefficient (a/2) in the time-
dependent term, which corresponds to half the energy of the complete system, a. Assuming that
the particles move away from each other from the common origin (x1 = x2 = 0) of the reference
direction, we would have to take as a consequence4 x2 = −x1. Therefore, considering x1 > 0
and choosing ϵ = 1, we have:

ψ1(x1, t) = B1/2 exp
{
−

√
ma

ℏ x1

}
exp

{
i
(√ma

ℏ x1 −
a

2ℏ t
)}

, (2.38)

ψ2(−x1, t) = B1/2 exp
{
−

√
ma

ℏ x1

}
exp

{
− i

(√ma
ℏ x1 +

a

2ℏ t
)}

. (2.39)

Note that the two functions have the same amplitude and that this attenuates with the increase of
x1. For the functions described above, we have that the following definitions:

k1 = k2 ≡
√
ma/ℏ & ω1 = ω2 ≡ a/2ℏ, (2.40)

are dimensionally compatible with the wavenumber (k) and the frequency (ω). Thus, the ex-
pressions (2.38) and (2.39) represent, separately, two plane waves that, moving away from each
other in opposite directions, attenuate as they propagate and whose product coincides with the
function (2.33). We thus verify that the function Ψ(x1, x2, t) in (2.33) is compatible with the
initial assumption that this function corresponds to two free particles.

2.5 A classical equation for Ψ(x1, x2, t)

We can directly obtain the equation for the function Ψ by taking advantage of the fact that its real
and imaginary parts, in (2.2), must verify Laplace’s equation, separately. However, to highlight
a specific relationship between the equation for Ψ(x1, x2, t) and the equation for C(x1 −x2), we
will go another way. In particular, it is interesting to verify whether the equation for Ψ is related
to the Schrödinger equation.

From the formal expression in (1.2) we have, by derivation in relation to the variable x1 that:

∂Ψ

∂x1
= C(η)

{
i

ℏ
∂S

∂x1
exp

{
iS(x1, x2, t)/ℏ

}}
+
dC

dη

dη

dx1
exp

{
iS(x1, x2, t)/ℏ

}
, (2.41)

A second derivation, in relation to the same variable, generates the expression:

∂2Ψ

∂x2
1
= C(η)

(
− 1

ℏ2

)(
∂S

∂x1

)2

exp
{
iS(x1, x2, t)/ℏ

}
+

+ C(η)
i

ℏ

(
∂2S

∂x2
1

)
exp

{
iS(x1, x2, t)/ℏ

}
+

dC

dη

dη

dx1

i

ℏ

(
∂S

∂x1

)
exp

{
iS(x1, x2, t)/h

}
+

+
dC

dη

i

ℏ

(
∂S

∂x1

)
exp

{
iS(x1, x2, t)/ℏ

}
+

d2C

dη2 exp
{
iS(x1, x2, t)/ℏ

}
. (2.42)

And, after two derivations of (1.2) in relation to the variable x2, we have:

∂2Ψ

∂x2
2
= C(η)

(
− 1

ℏ2

)(
∂S

∂x2

)2

exp
{
iS(x1, x2, t)/h

}
+

+ C(η)
i

ℏ

(
∂2S

∂x2
2

)
exp

{
iS(x1, x2, t)/ℏ

}
− dC

dη

i

ℏ

(
∂S

∂x2

)
exp

{
iS(x1, x2, t)/ℏ

}
+

− dC

dη

i

ℏ

(
∂S

∂x2

)
exp

{
iS(x1, x2, t)/ℏ

}
+
d2C

dη2 exp
{
iS(x1, x2, t)/ℏ

}
. (2.43)

4We must not forget that the variables x1 and x2 are independent for Ψ(x1, x2, t), forC(x1−x2), as well as for g(x1, x2).



Title suppressed due to length
161

Adding the expressions (2.42) and (2.43) we have:

∂2Ψ

∂x2
1
+
∂2Ψ

∂x2
2
=

= − 1
ℏ2

{(
∂S

∂x1

)2

+

(
∂S

∂x2

)2
}

Ψ +
i

ℏ

{
∂S

∂x1
− ∂S

∂x2

}
dC

dη
exp

{
iS(x1, x2, t)/ℏ

}
+

+
i

ℏ

{
∂2S

∂x2
1
+
∂2S

∂x2
2

}
Ψ + 2

d2C

dη2 exp
{
iS(x1, x2, t)/ℏ

}
. (2.44)

Using the results (2.9) and (2.15), the expression (2.44) is simplified, arriving at:

∂2Ψ

∂x2
1
+
∂2Ψ

∂x2
2
= − 1

ℏ2

{(
∂S

∂x1

)2

+

(
∂S

∂x2

)2
}

Ψ + 2
d2C

dη
exp

{
iS(x1, x2, t)/ℏ

}
. (2.45)

Substituting (2.26) in (2.45), we have,

∂2Ψ

∂x2
1
+
∂2Ψ

∂x2
2
= −2ma

ℏ2 Ψ + 2
d2C

dη
exp

{
iS(x1, x2, t)/ℏ

}
. (2.46)

Or also, considering (1.2), we have:

∂2Ψ

∂x2
1
+
∂2Ψ

∂x2
2
= 2

{
d2C

dη2 (η)−
ma

ℏ2 C(η)

}
exp

{
iS(x1, x2, t)/ℏ

}
. (2.47)

The term that appears in the center in (2.47) is precisely the one that appears on the left side in
equation (2.27); thus, in (2.47), it must be zero. Therefore, we arrive at the expected result:

∂2Ψ

∂x2
1
+
∂2Ψ

∂x2
2
= 0 , (2.48)

Which is a classical equation (does not contain ℏ). It is a surprise that, since Ψ is a quantum
function, it verifies a classical equation. From (2.48), no solution that carries time dependence
is expected; however, Ψ, em (2.33), depends, in addition to the coordinate variables x1 and x2,
on the time variable t and fulfills equation (2.48). How can this be explained?

2.6 A plausible interpretation for (2.48)

The fact that function (2.33), verifying equation (2.48), presents time dependence, can be inter-
preted as corresponding to a situation in which this equation comes from a larger equation, with
a time derivative term.

In the problem considered here, a special context or aspect of the physical manifestation
can be identified, where the temporal dependence is not physically relevant, even though the
corresponding “variable" remains in the wave function. Specifically, it is observed, from a phys-
ical point of view, that there is no difference between reaching the quantum-classical boundary
quickly or slowly. Reaching this boundary determines the “collapse" of a quantum description,
which is the same regardless of how quickly this happened. In this scenario, due to the essence of
the process, the time variable loses meaning, has no relevance, and only remains as a parameter,
so that:

Ψ(x1, x2, t) ≡ Ψ(x1, x2; t), ⇒ ∂Ψ

∂t
= 0. (2.49)

Thus, the complete Schrödinger equation for two free quantum particles (with the same mass
parameter m), in the case of 1-dimensional motion:

− ℏ2

2m

(∂2Ψ

∂x2
1
+
∂2Ψ

∂x2
2

)
= iℏ∂Ψ

∂t
. (2.50)
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is reduced to the classical equation (2.48) in the situation of proximity to the classical-quantum
boundary.

Complementarily, and independently of what is developed here, it can be seen in [29] that it
was verified that an entangled function with the form:

Ψ(x⃗1, x⃗2) =
∑
n

Cn

(
|x⃗2 − x⃗1|/λC

)
ψn(x⃗1) un(x⃗2), (2.51)

which is a generalization of the Einstein-Podolsky-Rosen state [45], where λC is the Compton
wavelength of the particles involved, ψn(x⃗1) eigenfunctions of an arbitrary observable for parti-
cle 1, etc., satisfies the 3-dimensional version of equation (2.48) under the main requirement that
the function Cn

(
|x⃗2 − x⃗1|/λC

)
, for |x⃗2 − x⃗1| → ∞, verifies: Cn → 0; that is, that in (53) the

quantum entanglement that carries this in the context of approximation to the quantum-classical
boundary is erased.

3 Conclusion

The main result of this work was to have shown that in the proximity of the quantum-classical
boundary, corresponding to the condition x1−x2 → ∞, which effectively proves to be (partially)
equivalent to the classical limit ℏ → 0, the description for two free quantum particles disappears
spontaneously under the sole requirement that the function representing their joint state be ana-
lytic. At no stage of the development presented have we required that any functions, such as the
harmonic functions u and v, have zero values at the quantum-classical boundary.

This result makes sense, since starting from the Hamilton-Jacobi & Schrödinger approach,
specifically from the classical Hamilton-Jacobi equation, it would be reasonable to expect that
one can also obtain results corresponding to the “outermost surface" of the microscopic world;
that is, the quantum-classical boundary.

What we are calling the classical Schrödinger equation is nothing more than a reduced version
of the full (quantum) Schrödinger equation for a situation of approximation to the classical-
quantum boundary, in which, effectively, the time variable can be taken as a parameter.

Finally, it may be interesting to point out that the quantum equation for the quantum function
C(x1 − x2), in (2.27), is the one that leads to the classical equation for the quantum function Ψ,
see (2.47). A simple, operational, and provisional way of seeing this consists in assuming a kind
of “transfer" of the quantum character of the general Schrödinger equation to the equation for
C(x1 − x2); thus, the equation for Ψ could no longer be quantum.
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