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Abstract: In this paper, we constructed a solution of the Schrödinger equation for the am-
monia molecule, modeled as a particle with a permanent electric dipole moment, which can
access only two quantum states, as part of a beam of these molecules entering a region where
an electrostatic field with a weak gradient act. In this solution, the contribution of the electric
field gradient to the eigenenergies of the molecule stands out in the context of linearization of the
square of one of the components of the electrostatic field. This result indicates that the analogy
established between the spatial separation of this beam of molecules and the spatial separation of
silver atoms in the inhomogeneous magnetic field in the Stern-Gerlach effect is not limited only
to spatial separation; the gradient effect on eigenenergies, recently identified in the Stern-Gerlach
case, also manifests itself in the case of ammonia molecules in an inhomogeneous electrostatic
field.
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1 Introduction

In the scientific literature dedicated to discoveries in quantum mechanics, there are some ex-
tensions of known problems, such as in [1]-[13], in which we can see the identification of some
previously disregarded aspects that escaped analysis1. Likewise, in the literature of mathematical
physics, there are new findings that show that several mathematical approaches can be adapted
to evaluate several complementary aspects in quantum mechanics [14]-[23].

Here we are interested in the so-called “electric Stern-Gerlach” effect, an analog of the Stern-
Gerlach effect2. We begin by reviewing references [24]-[26], which address the problem of
a beam of ammonia molecules (NH3), initially traveling along the positive X direction (Fig.
1), and then splitting into two secondary beams in the Y = 0 plane, within a region where a
non-homogeneous electric field acts, whose spatial configuration presents a gradient along the Z
coordinate direction.

Regarding references [24]-[26], it is worth noting that these do not contain analytical expres-
sions for the corresponding eigenfunctions; furthermore, the gradient of the electric field does
not appear explicitly in their equations, only the square of the electric field, which is considered
intense. In [27], on the other hand, considering the ammonia molecule as a system with only two
energy levels (of the vibrational type) and the action of a perturbative potential with a specific
shape, it was determined that the expressions of the corresponding energy levels depend on the
applied electric field, which is why the Stark effect was recognized. It should be mentioned, in
the case of [24], that these absences are consistent with a previous comment by the author3.

1An example of this situation is clearly seen in [1].
2Which is known and explained via quantum treatment from the interaction between the magnetic moment of the electron

spin (in a hydrogen atom of a substance such as vaporized silver) with a magnetic field, generated by a magnet, which
produces an intense gradient.

3Feynman said: “So I tried to describe the principles of quantum mechanics in a way that didn’t require first knowing the
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It can be inferred from figure 1 above, and from other similar figures, that the expression
“electric Stern-Gerlach” effect, uses the spatial separation of a beam of ammonia molecules into
two secondary beams as the only argument to support the analogy with the Stern-Gerlach effect.
It is shown here, however, that this is not the case. Based on a result shown in [3],[13], that
the gradient of a Stern-Gerlach-type magnetic field explicitly contributes to the eigenenergies
of the corresponding Hamiltonian, it is found, in a certain physical context and under certain
conditions, that the non-zero gradient of the electrostatic field also contributes to the respec-
tive eigenenergies (and not only the gradient, as we will see later), which extends the analogy
between both effects.

In this paper, we follow almost completely the general physical framework defined in [24]-
[26] for the ammonia molecule, as well as for the corresponding beam. In particular, we model
the ammonia molecule as an effective quantum particle4, without internal structure, with mass
equal to the molecule’s mass and with the same permanent electric dipole moment. Furthermore,
and unlike these references, the electric field gradient appears here explicitly in the equations; in
particular, we assume that this gradient is sufficiently weak, so that ∆z, in Fig. 1, corresponding
to the vertical aperture of the initial beam into two beams, is sufficiently small, with which the
linearization of the term proportional to z2 (z within the interval ∆z) is a good approximation.
Based on this, we construct the explicit eigenfunctions for the “electric Stern-Gerlach” effect,
for the decoupled equations for the state vector components. In addition, we explicitly show that
the eigenenergies of the model incorporate the contribution of the electrostatic field’s gradient
and the density of the electric charges that generate this field; results not found in [24]-[26].

Figure 1. Assuming that the magnitude of the gradient is small enough, the unfolded beams
(red) only separate from each other along the vertical. This separation, for better visualization,
is shown exaggeratedly in the figure.

Finally, regarding the beams unfolded, contained in the plane Y = 0, the following situations
are possible: (i) All molecules in a beam are in the same steady state; that is, the molecules in the
first beam have a different state from the molecules in the second beam; (ii) In the same beam
there are two sets of molecules, each in a steady state. The first case corresponds (see section 3)
to the value A = 0 and the second to the value A ̸= 0; in particular, non-zero and small values of
A correspond to situations in which there is a majority presence of molecules in the same steady
state.

mathematics of partial differential equations".
4A point particle, so that in the energy levels there will be no contributions that could come from vibrations, deformations,

etc. that can manifest themselves in a non-point structure.
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1.1 Representation of the electrostatic field, the electrostatic potential, and parity
symmetry

The beam of molecules enters a region (limited by the dashed lines in Fig. 1) where it interacts
with an electrostatic field, which is generated by a distribution of electric charge ρ.This field if
dependent on the coordinate variables y and z, can be formally expressed as,

E⃗(y, z) = −αyj+

(
E0 + (α+

ρ

ϵ0
)z

)
k, (1.1)

where E0 represents the homogeneous component of this field, and α the magnitude of the gra-
dient directed along the Z and Y directions.

The equation of Gauss’s law for electrostatics, in the international system of units:

∇·E⃗ = ρ/ϵ0 , (1.2)

is verified by (1.1). Furthermore, the field in (1.1) can be derived, according to E⃗ = −∇φ, from
the scalar potential:

φ(y, z) =
α

2
y2 − E0z −

1
2

(
α+

ρ

ϵ0

)
z2. (1.3)

Independently of the above, let us now see the effect of the parity transformation on the field
(1.1). Then, we have,

E⃗(y, z) ⇒ E⃗ ′(y′, z′) = E⃗(−y,−z) = − E⃗(y, z) + 2E0k̂, (1.4)

Thus, it is clear that the field (1.4), for E0 = 0, satisfies:

E⃗(−y,−z) = − E⃗(y, z), (1.5)

which corresponds to a parity transformation for a vector field, so that the field E⃗ in (1.1) will be
reduced here to the expression,

E⃗(y, z) = −αyĵ +
(
α+

ρ

ϵ0

)
zk̂, (1.6)

whose form will be considered as the correct one from now on. On the other hand, let us also
see the effect of the parity transformation on the electrostatic potential φ(y, z), previously taking
E0 = 0, as already justified; then, from:

φ(y, z) =
α

2
y2 − 1

2

(
α+

ρ

ϵ0

)
z2 , (1.7)

we have:
φ(y, z) ⇒ φ′(y′, z′) = φ(−y,−z) =

α

2
y2 − 1

2

(
α+

ρ

ϵ0

)
z2 , (1.8)

that is, the expression (1.7) is invariant in the face of a parity transformation, thus corresponding
to a scalar quantity, as expected for the electrostatic potential:

φ(−y,−z) = φ(y, z). (1.9)

2 Mathematical developments

From classical electromagnetism we know that polar molecules, such as ammonia, have a per-
manent electric dipole moment. This type of molecule undergoes deformation proportional to
the acting local field (assuming a linear regime), in the presence of an external electric field, and
tends to orient itself parallel to the direction defined by the external field at the location.

On the other hand, in a semi-classical treatment, the components µ1, µ2 and µ3 of µ⃗, the
induced5 electric dipole moment in the ammonia molecule (in the presence of an external electric

5The only one to be considered here, since this induced electric moment is sufficient to reveal the gradient dependence on
the eigenenergies of the Hamiltonian in (2.3).
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field E⃗ , are defined by a polarizability matrix:

µ⃗ =

 µ1

µ2

µ3

 =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 E1

E2

E3

 . (2.1)

In our case, from (1.6), we have that E1 = 0, E2 = −αy and E3 = (α+ (ρ/ϵ0))z.
According to expression (10), the components of µ⃗ are:

µ1 = σ12E2 + σ13E3 ⇒ µ1 = − σ12

(
αy
)
+ σ13

(
α+ (ρ/ϵ0)

)
z,

µ2 = σ22E2 + σ23E3 ⇒ µ2 = − σ22

(
αy
)
+ σ23

(
α+ (ρ/ϵ0)

)
z,

µ3 = σ32E2 + σ33E3 ⇒ µ3 = − σ32

(
αy
)
+ σ33

(
α+ (ρ/ϵ0)

)
z. (2.2)

Furthermore, the quantum Hamiltonian for an “effective particle6”, with induced electric dipole
moment µ⃗, in the electrostatic field given in (1.6), is written as:

Ĥ =
1

2m

{
P̂2
x + P̂2

y + P̂2
z

}(
1 0
0 1

)
+

(
µ⃗·E⃗ −A

−A −µ⃗·E⃗

)
, (2.3)

where A is the probability amplitude that a particle that is initially in the stationary state φ1
passes to the stationary state φ2.

For the rightmost term in (2.3), corresponding to the interaction between the electric dipole
moment and the externally applied electric field, we write,

Ĥ′ =

(
µ⃗·E⃗ −A

−A −µ⃗·E⃗

)
, (2.4)

where,

µ⃗·E⃗ =
{
− σ22

(
αy
)

+ σ23

(
α+ (ρ/ϵ0)

)
z
}
(αy) + (2.5)

+
{
− σ32

(
αy
)
+ σ33

(
α+ (ρ/ϵ0)

)
z
}
(α+

ρ

ϵ0
)z.

In the case drawn in Fig.1, and as considered in [14, 15, 16], there is no gradient along the Y
direction, and the separation of the initial beam into two beams only occurs in the plane Y = 0
(from which it follows, according to (1.6), that E2 = 0); in this case, expression (2.4) is simplified
to the following,

H′′ =

 σ33

(
α+ (ρ/ϵ0)

)2
z2 −A

−A −σ33

(
α+ (ρ/ϵ0)

)2
z2

 . (2.6)

For what follows, and this is a key procedure in this development, we proceed to linearize
the term:

(
α + (ρ/ϵ0)

)2
z2, which corresponds (except for the coefficient −σ33) to one of the

elements on the diagonal of the matrix H′′, in (2.6), within a “suitable” interval. Then we do:(
α+ (ρ/ϵ0)

)2
z2 →

(
(α+ (ρ/ϵ0))z

)2
→ (ω)2 → aω + b̃ =

(
α+ (ρ/ϵ0)

)(
az + b

)
.

where we have performed the linearization in the third step, from left to right, in the schematic
sequence above, keeping the factor

(
α+ (ρ/ϵ0)

)
explicit.

6Corresponding to an ammonia molecule, as discussed previously.
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In this situation, where we use the linear approximation above, we have a simpler expression
for the electrical interaction matrix (i.e., the interaction between the induced electric dipole mo-
ment and the external electrostatic field):

H′′
linear =

 σ33

(
α+ ρ

ϵ0

)
(az + b) −A

−A −σ33

(
α+ ρ

ϵ0

)
(az + b)

 . (2.7)

Thus, for the approach and assumptions considered, the stationary equation,

Ĥ

(
φ1

φ2

)
=

{
1

2m
(P̂2

x + P̂2
z)I +H′′

linear

}(
φ1

φ2

)
= E

(
φ1

φ2

)
, (2.8)

where I is the identity matrix, can be written explicitly as a system of two coupled7 equations
for the components φ1 and φ2 of the (non-relativistic) spinor,{

1
2m

(P̂2
x + P̂2

z) + σ33

(
α+ (

ρ

ϵ0
)
)
(az + b)

}
φ1 −Aφ2 = E1φ1 (2.9)

{
1

2m
(P̂2

x + P̂2
z)− σ33

(
α+ (

ρ

ϵ0
)
)
(az + b)

}
φ2 −Aφ1 = E2φ2 (2.10)

or, after grouping like terms, we have:{
1

2m
(P̂2

x + P̂2
z) + a σ33

(
α+ (

ρ

ϵ0
)
)
z

}
φ1 −Aφ2 = Ẽ1φ1 (2.11)

{
1

2m
(P̂2

x + P̂2
z)− a σ33

(
α+ (

ρ

ϵ0
)
)
z

}
φ2 −Aφ1 = Ẽ2φ2. (2.12)

where the eigenenergies are redefined (which now include a dependence on the gradient), as
follows,

Ẽ1 ≡ E1 − σ33

(
α+ (

ρ

ϵ0
)
)
b, (2.13)

Ẽ2 ≡ E2 + σ33

(
α+ (

ρ

ϵ0
)
)
b. (2.14)

Equations (20) and (21) can also be written compactly as,

Ô1φ1 −Aφ2 = Ẽ1φ1 (2.15)

Ô2φ2 −Aφ1 = Ẽ2φ2 (2.16)

where Ô is the corresponding differential operator. In the next section we will construct the
solutions to equations (20) and (21) assuming the particular case when there is no coupling
(A = 0) between them.

3 Solution for the decoupled case of the equations for the two components of
the state vector

Before we begin to solve equations (2.11) and (2.12), for A = 0, it should be noted that our
purpose is to determine whether or not the gradient of the electrostatic field contributes to the
eigenenergies of the physical system considered.

The independent equations that we have to consider are:{
1

2m
(P̂2

x + P̂2
z) + a σ33

(
α+

ρ

ϵ0

)
z

}
φ1 = Ẽ1φ1, (3.1)

7In [10] what was initially considered a system of two coupled Schrödinger equations was considered, showing that they
admitted exact decoupling, but for two functions distinct from the initial ones.
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{
1

2m
(P̂2

x + P̂2
z) − a σ33

(
α+

ρ

ϵ0

)
z

}
φ2 = Ẽ2φ2. (3.2)

We begin with equation (3.1). Assuming that a solution has the form corresponding to the
separation of its variables, we write:

φ1(x, z) = X(x) Z(z), (3.3)

Next, since the incident beam moves along the X direction and the unfolded beams move
away from each other symmetrically with respect to the same direction, we will impose, given
the presence of the leftmost term in (3.1), that: X(x) = e(i/ℏ)pxx, where px is an eigenvalue of
P̂x. In this case, we obtain the following equation for the function Z:

Z ′′(z) −

{
1
ℏ2

(
2m a σ33

(
α+ (ρ/ϵ0)

) )
z − 2m

ℏ2

(
Ẽ1 −

p2
x

2m

)}
Z(z) = 0 (3.4)

where, for brevity, we write:

λ ≡ 1
ℏ2

(
2m a σ33

(
α+ (ρ/ϵ0)

) )
, λ1 ≡ 2m

ℏ2

(
Ẽ1 −

p2
x

2m

)
. (3.5)

Note that the expression in (29) is an equation not so different from the Airy equation. We can
arrive at the same Airy equation by changing the variable: ζ = λ1/3z − λ1λ

−2/3; that is, we go
from (3.4) to the equation:

Z ′′(ζ) − ζZ(ζ) = 0, (3.6)

the well-known Airy equation; that is, Z ≡ Ai. Then we have, from (3.3):

φ1(x, z) = e(i/ℏ)pxx Ai
(
λ1/3z + ξ0

)
. (3.7)

where ξ0, representing the coordinate of the point of an absolute maximum of the Airy function
(Ai), is incorporated in (3.7) to move this maximum to the origin of coordinates (the same
procedure will be done, but symmetrically, for the function φ2), so that the absolute maximum
of φ1 and φ2 coincide since their separation is only due to their interaction with the electrostatic
field. Note, according to what has already been seen, that one would expect the function Ai in
(3.7) to have as an argument the expression (λ1/3z−λ1λ

−2/3), but this is not the case; the correct
expression is (λ1/3z + ξ0).

On the other hand, it is known that the Airy function presents, on one of its sides, decreasing
oscillations that do not vanish at infinity and, on its opposite side, a continuously decreasing
behavior that begins at its absolute maximum. Also, from (3.7), we have that the function:
|φ1|2 = |Ai|2 is not integrable. Therefore, to represent a physically acceptable wave function,
we should eliminate the part of the function Ai that produces this inconvenience. Using the same
resource used in [13], that is: we appropriately multiply the function in (3.7) by the Heaviside
function (Θ).

φ1(x, z) = e(i/ℏ)pxx Ai
(
λ1/3z + ξ0

)
Θ

(
z − λ0

λ1/3 + ξ0

)
, (3.8)

which cuts the Airy function at its first zero, λ0.
With regard to determining the eigenenergy Ẽ1, or E1, it is sufficient to consider (3.7). So,

after calculating the spatial derivatives of the function in (3.7), we can write:

− ℏ2

2m

(
∂2φ1

∂x2 +
∂2φ1

∂z2

)
+ al σ33

(
α+

ρ

ϵ0

)
z φ1 =

=
p2
x

2m
Ai
(
λ1/3z + ξ0

)
e(i/ℏ)pxx −

(ℏ2λ2/3

2m

)
Ai′′

(
λ1/3z + ξ0

)
e(i/ℏ)pxx +

+ al σ33

(
α+

ρ

ϵ0

)
z Ai

(
λ1/3z + ξ0

)
e(i/ℏ)pxx. (3.9)
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In (3.9), we will add and subtract the quantity:

ξ0

{
a2 σ2

33

(
α+

ρ

ϵ0

)2
ℏ2/2m

}1/3
Ai
(
λ1/3z + ξ0

)
e(i/ℏ)pxx, (3.10)

Then we have:

− ℏ2

2m

(
∂2φ1

∂x2 +
∂2φ1

∂z2

)
+ a σ33

(
α+

ρ

ϵ0

)
z φ1 =

=

(
p2
x

2m
− ξ0

{
a2 σ2

33

(
α+

ρ

ϵ0

)2
ℏ2
/

2m
}1/3

)
Ai
(
λ1/3 + ξ0

)
e(i/ℏ)pxx +

−
(ℏ2λ2/3

2m

)
Ai′′

(
λ1/3z + ξ0

)
e(i/ℏ)pxx +

+

(
al σ33

(
α+

ρ

ϵ0

)
z + ξ0

{
a2 σ2

33

(
α+

ρ

ϵ0

)2
ℏ2
/

2m
}1/3

)
Ai
(
λ1/3z+ ξ0

)
e(i/ℏ)pxx. (3.11)

or, also:

− ℏ2

2m

(
∂2φ1

∂x2 +
∂2φ1

∂z2

)
+ a σ33

(
α+

ρ

ϵ0

)
z φ1 =

=

(
p2
x

2m
− ξ0

{
a2 σ2

33

(
α+

ρ

ϵ0

)2
ℏ2
/

2m
}1/3

)
Ai
(
λ1/3z + ξ0

)
e(i/ℏ)pxx +

−
(ℏ2λ2/3

2m

){
Ai′′

(
λ1/3z + ξ0

)
− κ Ai

(
λ1/3z + ξ0

)}
(3.12)

where,

κ =

({
2m a σ33

(
α+ ρ

ϵ0

)
ℏ2λ2/3

}
z + ξ0

( 2m
ℏ2λ2/3

){a2 σ2
33

(
α+ ρ

ϵ0

)2
ℏ2

2m

}1/3
)
. (3.13)

Considering (3.5), we find that κ is rewritten as:

κ = λ1/3z + ξ0. (3.14)

Thus, equation (37) can be written as follows:

− ℏ2

2m

(
∂2φ1

∂x2 +
∂2φ1

∂z2

)
+ a σ33

(
α+

ρ

ϵ0

)
z φ1 =

=

(
p2
x

2m
− ξ0

{
a2 σ2

33

(
α+

ρ

ϵ0

)2
ℏ2
/

2m
}1/3

)
Ai
(
λ1/3z + ξ0

)
e(i/ℏ)pxx +

−
(ℏ2λ2/3

2m

){
Ai′′

(
λ1/3z + ξ0

)
−
(
λ1/3z + ξ0

)
Ai
(
λ1/3z + ξ0

)}
. (3.15)

But, the second term on the right-hand side in equation (3.15) equals zero, since Ai
(
λ1/3z+ ξ0

)
satisfies the Airy equation. Therefore, we have the simplified expression:

− ℏ2

2m

(
∂2φ1

∂x2 +
∂2φ1

∂z2

)
+ a σ33

(
α+

ρ

ϵ0

)
z φ1 = (3.16)

=

(
p2
x

2m
− ξ0

{
a2 σ2

33

(
α+

ρ

ϵ0

)2
ℏ2
/

2m
}1/3

)
φ1.
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Comparing (41) with (26), we have that the eigenenergy associated with the function φ1 is given
by:

Ẽ1 =
p2
x

2m
− ξ0

{
a2 σ2

33

(
α+ (ρ/ϵ0)

)2
ℏ2

2m

}1/3

. (3.17)

Replacing the expression Ẽ1 ≡ E1 − σ33

(
α+ ( ρ

ϵ0
)
)
b, found in (2.13), in expression (3.17), we

obtain the following formal expression for the eigenenergy E1:

E1 =
p2
x

2m
+ σ33

(
α+ (

ρ

ϵ0
)
)
b − ξ0

{
a2 σ2

33

(
α+ (ρ/ϵ0)

)2
ℏ2

2m

}1/3

. (3.18)

Following a similar procedure, we obtain for φ2:

φ2(x, z) = e(i/ℏ)pxx Ai
(
− λ1/3z + ξ0

)
Θ

(
− z − λ0

λ1/3 + ξ0

)
, (3.19)

With eigenenergy:

E2 =
p2
x

2m
− σ33

(
α+ (

ρ

ϵ0
)
)
b − ξ0

{
a2 σ2

33

(
α+ (ρ/ϵ0)

)2
ℏ2

2m

}1/3

, (3.20)

where it is clear that the eigenenergies depend on the magnitude of the gradient α and the electric
charge density ρ. These results are valid only within the context of linearization that we have
assumed.

4 Discussion

In the context that we have considered, we note, on the one hand, that in (3.18) and (3.20) there
are two types of contributions of the electrostatic field gradient to the eigenenergies; on the one
hand, the term:

± σ33

(
α+ (

ρ

ϵ0
)
)
b,

produces the energetic separation between the molecules, in relation to the energies of the trans-
lational movement, while the term,

− ξ0

{
a2 σ2

33

(
α+ (ρ/ϵ0)

)2
ℏ2

2m

}1/3

,

produces the same displacement of the energetic levels unfolded by the linear term in: α+(ρ/ϵ0).
In the case with a very weak gradient, we have that the spatial separation of the initial beam

of molecules into two beams, in the plane Y = 0, in the region where the electric field acts,
would be small.

On the other hand, we have from (3.18) and (3.20), that for the values of the geometric
parameters a = 0 and b = 0, only the kinetic energy term remains in the eigenenergies, which
means that these values would characterize, in an operational manner, and after the linearization
of the quadratic term, the absence of an electric field acting on the beam of molecules; and then
we would have to:

E1 = E2 =
p2
x

2m
.

Also note an interesting fact. In the magnetic case, the density of magnetic charges can
only have a null value8, so that taking the value α = 0 is enough to cancel the gradient effect

8Since magnetic monopoles do not exist as elementary particles; however, magnetic monopoles resulting from a collective
effect have been experimentally observed in the structure called “spin ice” [28].
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on the eigenenergies in the Stern-Gerlach effect [9]. On the other hand, in the “electric Stern-
Gerlach” case, the density of electric charges is non-zero; thus, α = 0, alone, could not cancel
the additional effect of displacement in the energy levels given in (3.18) and (3.20), unless,
together with a null value attributed to the density of electric charges ρ = 0 (which would then
not generate an electrostatic field). In other words, in the case of the “electric Stern-Gerlach”
effect, the gradient effect on eigenenergies becomes a combined effect of the gradient and the
density of electric charges, a type of result that the authors claim to be unaware of in the general
literature on quantum mechanics.

5 Conclusion

This article considers a beam of ammonia molecules within a region where an inhomogeneous
electric field acts. These molecules were modeled as quantum particles that can access only two
stationary states; without internal structure, however, with a permanent electric dipole moment.
Assuming a weak gradient regime and via a linearization process of a quadratic term, we obtain
explicit analytical expressions, (3.8) and (3.19), for the eigenfunctions of the reduced Hamil-
tonian (2.7), as well as for the corresponding eigenenergies, (3.18) and (3.20), which present
explicit dependence on the gradient of the electrostatic field and the density of electric charges
that generate this field, results that do not appear in the references [14, 15, 16].

The results found for the eigenenergies, in particular, show that the analogy between the
spatial separation observed in the Stern-Gerlach effect and the spatial separation of a beam of
ammonia molecules, into two secondary beams due to their interaction with this electrostatic
field, is broader than considered, since an analogy can also be established between the corre-
sponding eigenenergies, in the sense of the manifestation of the gradient effect in both cases.

The spatial separation of the incident beam into two secondary beams, in the “electric Stern-
Gerlach” effect, results from the molecules presenting a permanent electric dipole moment.
Here, we were particularly interested in the energetic part of this effect, where it was sufficient
to consider the induced electric dipole moment.
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